

ImmunoStrip® Validation Report On-site Plant Pathogen Testing *Pseudomonas* spp. ISK/STX 82200 ImmunoStrip®

Phone: 800-622-4342 Sales Email: info@agdia.com Technical Email: techsupport@agdia.com

Test Characteristics

Test Name	Pseudomonas spp.	Capture Antibody	Polyclonal (Rabbit)
Catalog Number	82200	Detection Antibody	Polyclonal (Rabbit)
Acronym	Pseudomonas spp.	Format	Lateral Flow Device
Genus	Pseudomonas	Diluents	BEB1
		Sample Dilution	1:20

Summary

The Pseudomonas spp. ImmunoStrip is used to detect the presence of Pseudomonas species in fruit, ornamental, and vegetable crops. ImmunoStrips[®] are the perfect screening tool for use in the field, greenhouse, and the lab.

Diagnostic Sensitivity

True Positives 148 Correct Diagnoses 137 Percent 92.6%

Analytical Sensitivity: Varies depending on which species is present in the sample. Below are several examples of analytical sensitivity tested during product validation.

	Analytical Sensitivity:	The assay is 87.5% sensitive between 10^4 CFU and 10^3 CFU. (n=16)
P. syringae pv. syringae	Limit of Detection:	The assay has a 100% detection rate at 10^4 CFU with bacterial culture. (n=8)
		The assay has a 75% detection rate at 10^3 CFU with bacterial culture. (n=8)
	Analytical Sensitivity:	The assay is 66.7% sensitive between 10 6 CFU and 10 5 CFU. (n=12)
P. syringae pv. pisi	Limit of Detection:	The assay has a 100% detection rate at 10^6 CFU with bacterial culture. (n=6)
		The assay has a 33.3% detection rate at 10 5 CFU with bacterial culture. (n=6)
	Analytical Sensitivity:	The assay is 87.5% sensitive between 10 6 CFU and 10 5 CFU. (n=12)
P. syringae pv. tomato	Limit of Detection:	The assay has a 100% detection rate at 10^6 CFU with bacterial culture. (n=4)
		The assay has a 75% detection rate at 10^5 CFU with bacterial culture. (n=8)
	Analytical Sensitivity:	The assay is 62.5% sensitive between 10 6 CFU and 10 5 CFU. (n=12)
P. capsici	Limit of Detection:	The assay has a 100% detection rate at 10^6 CFU with bacterial culture. (n=4)
		The assay has a 25% detection rate at 10 $^{\scriptscriptstyle 5}$ CFU with bacterial culture. (n=8)

Analytical Specificity

Inclusivity:

Species	Detected:
opecies	Dettettet.

Pseudomonas aeruginosa	Pseudomonas amygdali pv. lachrymans	
Pseudomonas amygdali pv. morsprunorum	Pseudomonas cannabina	
Pseudomonas cannabina pv. alisalensis	Pseudomonas capsici	

Species Detected:

Pseudomonas cichorii	Pseudomonas corrugata
Pseudomonas fluorescens	Pseudomonas lini
Pseudomonas savastanoi pv. glycinea	Pseudomonas savastanoi pv. phaseolicola
Pseudomonas syringae pv. aceris	Pseudomonas syringae pv. aptata
Pseudomonas syringae pv. atrofaciens	Pseudomonas syringae pv. japonica
Pseudomonas syringae pv. pisi	Pseudomonas syringae pv. syringae
Pseudomonas syringae pv. tomato	Pseudomonas tremae
Pseudomonas viridiflava	

Species Not Detected:

Pseudomonas chlororaphis	Pseudomonas coronafaciens
--------------------------	---------------------------

Exclusivity:

Cross-reacts With:

Ectopseudomonas mendocina	Stutzerimonas stutzeri
Xanthomonas campestris pv. incanae	Xanthomonas hortorum pv. vitians

Does Not Cross-react With:

Agrobacterium tumefaciens	Burkholderia glumae	
Clavibacter michiganensis subsp. michiganensis	Dickeya chrysanthemi	
Metapseudomonas resinovorans	Pectobacterium carotovorum	
Ralstonia solanacearum	Xanthomonas axonopodis pv. poinsettiicola	
Xanthomonas campestris pv. armoraciae	Xanthomonas campestris pv. raphani	
Xanthomonas campestris pv. zinniae	Xanthomonas euvesicatoria pv. allii	
Xanthomonas hortorum pv. carotae	Xanthomonas hortorum pv. pelargonii	
Xanthomonas phaseoli pv. phaseoli	Xanthomonas translucens pv. translucens	

Diagnostic Specificity

True Negatives 184 Correct Diagnoses 183 Percent 99.5%

Selectivity:

No Matrix Effect Observed With:			
Barley leaves	Barley stems	Bean leaves	Bean midribs
Bean petioles	Bean stems	Beet leaves	Beet roots
Beet stems	Beet stems	Broccoli leaves	Broccoli roots
Brussels sprouts leaves	Brussels sprouts roots	Brussels sprouts stems	Cabbage leaves
Cannabis leaves	Cannabis stems	Celery leaves	Celery roots
Celery stems	Chrysanthemum leaves	Chrysanthemum roots	Chrysanthemum stems
Citrus leaves	Citrus leaves	Citrus stems	Cucumber leaves
Cucumber stems	Geranium leaves	Geranium roots	Geranium stems
Hosta leaves	Hosta stems	Impatiens leaves	Impatiens roots
Impatiens stems	Kale leaves	Kale stems	Kiwi leaves
Kiwi stems	Lettuce leaves	Lettuce stems	Melon leaves
Melon roots	Melon stems	Oats leaves	Oats stems

Pea leaves	Pea stems	Pepper leaves	Pepper midribs
Pepper petioles	Pepper stems	Prunus leaves	Rye leaves
Rye stems	Soybean leaves	Soybean stems	Squash leaves
Squash roots	Squash stems	Sunflower leaves	Sunflower midribs
Sunflower petioles	Sunflower stems	Tomato leaves	Tomato roots
Tomato stems	Turnip leaves	Turnip stems	Vetch leaves
Wheat leaves	Wheat roots	Wheat stems	

The hosts on the above list have been chosen to represent those which historically cause a range of matrix effects, in addition to those expected to be screened for this pathogen. Not all plant species susceptible to this pathogen have been screened, but may still be used with this assay unless otherwise noted below. As with all diagnostic tools, Agdia recommends confirming all results with a secondary detection method before making any economic decisions (ex: discarding plants due to positive test results, etc.).

Matrix Effect Observed With: Barley roots Bean roots Cabbage roots Cannabis roots Cucumber roots Kale roots Kiwi roots Lettuce roots Oats roots Pea roots Pepper roots Rye roots Sunflower roots Image: Sunflower roots Image: Sunflower roots Image: Sunflower roots

Repeatability

Number of Samples	332
Replicates per Sample	2 - 12
Total Replicates	778
Replicates in Agreement	754
Percent Agreement	96.9%

Reproducibility

- Number of Samples 44
- Replicates per Sample 3
- Number of Operators 3
 - Total Replicates 396
- Replicates in Agreement 387
 - Percent Agreement 97.7%

Robustness

Planned deviation analysis:

No deviations from the user guide protocol were validated.

Stability:

	1-year stability (accelerated)	Real-time Stability Verification
Positive Sample (High)	Pass	Monitoring
Positive Sample (High)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Negative Sample	Pass	Monitoring
Negative Sample	Pass	Monitoring
Negative Sample	Pass	Monitoring

Glossary

Diagnostic sensitivity ¹ :	The percentage of positive samples correctly identified in an experiment with known positive controls.
Diagnostic specificity ¹ :	The percentage of negative samples correctly identified in an experiment with known negative controls.
Analytical sensitivity ³ :	The smallest amount of target that can be detected reliably (this is sometimes referred to as the 'limit of detection')
Analytical specificity ³ :	(comprises inclusivity and exclusivity)
Inclusivity ³ :	The performance of a test with a range of target isolates covering genetic diversity, different geographical origin and/or hosts associated with the target organism.
Exclusivity ³ :	The performance of a test with a range of non-targets (e.g. cross-reaction with closely related organisms, contaminants)
Selectivity ² :	The level of effect that matrices and relevant plant parts have on the performance of the assay.
Repeatability ² :	The agreement between test replicates of the same sample tested by the same operator.
Reproducibility ³ :	The ability of a test to provide consistent results when applied to aliquots of the same sample tested under different conditions (e.g. time, users, equipment, location)
Robustness ^{1,3} :	The extent to which varying test conditions (e.g. temperature, volume, change of buffers) affect the established test performance values. May also be referred to as planned deviation analysis.
Stability ¹ :	The performance of test reagents or controls over time.
Deferences	

References:

¹Groth-Helms, D., Rivera, Y., Martin, F. N., Arif, M., Sharma, P., Castlebury, L. A. (in press). Terminology and Guidelines for Diagnostic Assay Development and Validation: Best Practices for Molecular Tests. PhytoFrontiers.

²Eads, A., Groth-Helms, D., Davenport, B., Cha, X., Li, R., Walsh, C., Schuetz, K., (in press). The Commercial Validation of Three Tomato Brown Rugose Fruit Virus Assays. PhytoFrontiers.

³EPPO (2018) PM 7/76 (5) Use of EPPO Diagnostic Standards, EPPO Bulletin 48, 373–377.

ImmunoStrip® is a registered trademark of Agdia, Inc.