

Test Characteristics

Test Name Squash vein yellowing virus Test Label FAM-labeled target probe

Catalog Number91800Internal ControlN/AAcronymSqVYVFormatXRT

Genus Ipomovirus Diluents GEB2/PD1

Binomial Name Ipomovirus cucurbitavenaflavi Sample Dilution 1:20

Summary

AmplifyRP® XRT for SqVYV is a rapid RNA amplification and detection platform designed for testing cucurbits for Squash vein yellowing virus. This kit includes lyophilized reaction pellets containing the necessary reagents to amplify SqVYV RNA at a single operating temperature (42 °C).

Diagnostic Sensitivity Analytical Sensitivity

True Positives 135 Analytical Sensitivity: The assay is 62.5% sensitive between 100 ag/μL and 1 fg/μL. (n=8)

Correct Diagnoses 133 Limit of Detection: The assay has a 100% detection rate at 1 fg/μL with purified virus. (n=4)

Percent 98.5% The assay has a 25% detection rate at 100 ag/μL with purified virus. (n=4)

Analytical Specificity

Inclusivity:

Isolates and Geographic Regions Detected:

SqVYV-Baghdad-MS89 (Iraq)	SqVYV-DSMZ PV-1224 (USA) ¹
SqVYV-DSMZ PV-1348 (USA)	SqVYV-Florida (USA)
SqVYV-IL (Israel) ¹	SqVYV-Ir (Iran) ¹
SqVYV-SM2008cHe (FL, USA) ¹	SqVYV-SVYV/Iraq (Iraq)¹
SqVYV Texas, USA isolate	
¹Predicted detection by <i>in silico</i> analysis only	

Exclusivity:

Cross-reacts With:

Virus Name	Species Name
None Known	

Does Not Cross-react With:

Virus Name	Species Name
Alfalfa mosaic virus (AMV)	Alfamovirus AMV
Algerian watermelon mosaic virus (AWMV) ¹	Potyvirus algeriaense
Cassava brown streak virus (CBSV) ¹	Ipomovirus brunusmanihotis
Coccinia mottle virus (CocMoV) ¹	Ipomovirus cocciniae

p373 Revised:06/23/2025 Page 1 of 4

Does Not Cross-react With:

Virus Name	Species Name
Cucumber green mottle mosaic virus (CGMMV)	Tobamovirus viridimaculae
Cucumber mosaic virus (CMV)	Cucumovirus CMV
Cucumber vein yellowing virus (CVYV)	Ipomovirus cucumisvenaflavi
Cucumber vein-clearing virus (CuVCV) ¹	Carlavirus cucumis
Cucurbit leaf crumple virus (CuLCrV)¹	Begomovirus cucurbitae
Melon necrotic spot virus (MNSV)	Gammacarmovirus melonis
Moroccan watermelon mosaic virus (MWMV) ¹	Potyvirus citrullimoroccense
Papaya ringspot virus (PRSV)	Potyvirus papayanuli
Squash mosaic virus (SqMV)	Comovirus cucurbitae
Sweet potato mild mottle virus (SPMMV) ¹	Ipomovirus lenisbatatae
Tobacco mosaic virus (TMV)	Tobamovirus tabaci
Tomato leaf curl New Delhi virus (ToLCNDV)	Begomovirus solanumdelhiense
Tomato mild mottle virus (TMMoV) ¹	Ipomovirus lycopersici
Tomato mottle mosaic virus (ToMMV)	Tobamovirus maculatessellati
Ugandan cassava brown streak virus (UCBSV)¹	Ipomovirus manihotis
Watermelon leaf mottle virus (WLMV) ¹	Potyvirus citrullufolimaculae
Watermelon mosaic virus (WMV)	Potyvirus citrulli
Zucchini yellow mosaic virus (ZYMV)	Potyvirus cucurbitaflavitesselati
¹ Predicted non-detection by <i>in silico</i> analysis only	

Diagnostic Specificity

True Negatives 61

Correct Diagnoses 61

Percent 100%

Selectivity:

No Matrix Effect Observed With:			
Bitter gourd leaves	Bitter gourd petioles	Bitter gourd stems	Bottle gourd leaves
Bottle gourd petioles	Bottle gourd stems	Cucumber leaves	Cucumber petioles
Cucumber stems	Melon leaves	Melon petioles	Melon stems
Pumpkin leaves	Pumpkin petioles	Pumpkin stems	Squash leaves
Squash petioles	Squash stems	Watermelon leaves	Watermelon petioles
Watermelon stems			

The hosts on the above list have been chosen to represent those which historically cause a range of matrix effects, in addition to those expected to be screened for this pathogen. Not all plant species susceptible to this pathogen have been screened, but may still be used with this assay unless otherwise noted below. As with all diagnostic tools, Agdia recommends confirming all results with a secondary detection method before making any economic decisions (ex: discarding plants due to positive test results, etc.).

Matrix Effect Observed With:			
None Known			

p373 Revised:06/23/2025 Page 2 of 4

Reproducibility

Number of Samples	196	Number of Samples	24
Replicates per Sample	2 - 3	Replicates per Sample	3
Total Replicates	416	Number of Operators	4
Replicates in Agreement	409	Total Replicates	288
Percent Agreement	98.3%	Replicates in Agreement	287
		Percent Agreement	99.7%

Robustness

Planned deviation analysis:

No deviations from the user guide protocol were validated.

Stability:

	1-year stability (accelerated)	Real-time Stability Verification
Positive Sample (High)	Pass	Monitoring
Positive Sample (High)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Negative Sample	Pass	Monitoring
Negative Sample	Pass	Monitoring

p373 Revised:06/23/2025 Page 3 of 4

Glossary

Diagnostic sensitivity': The percentage of positive samples correctly identified in an experiment with known positive controls.

Diagnostic specificity': The percentage of negative samples correctly identified in an experiment with known negative controls.

Analytical sensitivity3: The smallest amount of target that can be detected reliably (this is sometimes referred to as the 'limit of detection')

Analytical specificity³: (comprises inclusivity and exclusivity)

Inclusivity³: The performance of a test with a range of target isolates covering genetic diversity, different geographical origin and/or hosts

associated with the target organism.

Exclusivity³: The performance of a test with a range of non-targets (e.g. cross-reaction with closely related organisms, contaminants)

Selectivity²: The level of effect that matrices and relevant plant parts have on the performance of the assay.

Repeatability²: The agreement between test replicates of the same sample tested by the same operator.

Reproducibility³: The ability of a test to provide consistent results when applied to aliquots of the same sample tested under different conditions

(e.g. time, users, equipment, location)

Robustness^{1,3}: The extent to which varying test conditions (e.g. temperature, volume, change of buffers) affect the established test performance

values. May also be referred to as planned deviation analysis.

Stability¹: The performance of test reagents or controls over time.

References:

¹Groth-Helms, D., Rivera, Y., Martin, F. N., Arif, M., Sharma, P., Castlebury, L. A. (in press). Terminology and Guidelines for Diagnostic Assay Development and Validation: Best Practices for Molecular Tests. PhytoFrontiers.

²Eads, A., Groth-Helms, D., Davenport, B., Cha, X., Li, R., Walsh, C., Schuetz, K., (in press). The Commercial Validation of Three Tomato Brown Rugose Fruit Virus Assays. PhytoFrontiers.

³EPPO (2018) PM 7/76 (5) Use of EPPO Diagnostic Standards, EPPO Bulletin 48, 373–377.

Questions or Technical Support:

Phone: 800-622-4342 (toll-free) or 574-264-2014

Fax: 574-264-2153

E-mail: info@agdia.com for sales and general product information

<u>techsupport@agdia.com</u> for technical information and troubleshooting

Web: www.agdia.com

AmplifyRP Test Kits employ recombinase polymerase amplification (RPA) technology, developed by TwistDx Limited, U.K. Use of the RPA process and probe technologies are protected by US patents 7,270,981 B2, 7,399,590 B2, 7,435,561 B2, 7,485,428 B2 and foreign equivalents in addition to pending patents.

AmplifyRP® is a registered trademark of Agdia, Inc.

p373 Revised:06/23/2025 Page 4 of 4