gdia AmplifyRP® XRT for PVY Validation Report Potato virus Y Product No. XCS 20001

Test Characteristics

Test Name	Potato virus Y	Test Label	FAM-labeled target probe
Catalog Number	20001	Internal Control	Endogenous
Acronym	PVY	Format	XRT
Genus	Potyvirus	Diluents	GEB/PD1
Binomial Name	Potyvirus yituberosi	Sample Dilution	1:20

Summary

AmplifyRP XRT for PVY is a rapid RNA amplification and detection platform designed for testing potatoes and ornamentals for Potato virus Y. This kit includes lyophilized reaction pellets containing the necessary reagents to amplify PVY RNA and an endogenous RNA control at a single operating temperature (42 °C).

Diagnostic Sensi	tivity	Analytical Sensitiv	ity
True Positives	50	Analytical Sensitivity:	Approximately 10 fg/µL of RNA transcripts
Correct Diagnoses	48		
Percent	96.0%		

Analytical Specificity

Inclusivity:

Isolates and Geographic Regions Detected:

PVY ^c	PVY ^N
PVY ^{N:O}	PVY ^{NaN}
PVY ^{NN}	PVY ^{NTN}
PVY ^{N-Wi}	PVY ^o
PVY ^{O+C}	PVY ⁰⁵
PVY ^c -E48 (Iran) ¹	PVY ^c -PRI-509 (Netherlands) ¹
PVY-LYE84.2 (Spain) ¹	PVY ^{N:0} -A95 (USA) ¹
PVY ^{N:O} -Alt ¹	PVY ^{N:O} -LW (Poland) ¹
PVY ^N -6051	PVY ^{NaN} -Nicola (Germany) ¹
PVY ^{NaN} -RRA-1 ¹	PVY ^{NaN} -Tu 660 ¹
PVY ^{NE11} -ID20 (USA) ¹	PVY ^{NE11} -NE11 ¹
PVY ^N -Mont ¹	PVY ^{NTN} -156 (Germany) ¹
PVY ^{NTN} -HR1 (USA) ¹	PVY ^{NTN} -PB312 (USA) ¹
PVY ^{N-Wi} -LR (USA) ¹	PVY ^{N-Wi} -N1 (USA) ¹
PVY ^{N-Wi} -PN10A ¹	PVY ⁰⁵ -ID269 (USA) ¹
PVY ⁰⁵ -ID968 (USA) ¹	PVY ⁰⁵ -ME56 (USA) ¹
PVY ^o -ME173 (USA) ¹	PVY ^o -Oz (USA) ¹
PVY ^o -SCRI-O (UK) ¹	PVY-SON41 (France) ¹
¹ Predicted detection by <i>in silico</i> analysis only	

Exclusivity:

Cross-reacts With:

Virus Name	Species Name
None Known	

Does Not Cross-react With:

Virus Name	Species Name
Alfalfa mosaic virus (AMV)	Alfamovirus AMV
Alstroemeria mosaic virus (AIMV)	Potyvirus alstromeriae
Andean potato mottle virus (APMoV)	Comovirus andesense
Bean common mosaic virus (BCMV)	Potyvirus phaseovulgaris
Bean yellow mosaic virus (BYMV)	Potyvirus phaseoluteum
Beet mosaic virus (BtMV)	Potyvirus betaceum
Bidens mosaic virus (BiMV) ¹	Potyvirus bidensia
Clover yellow vein virus (CIYVV)	Potyvirus trifolii
Dasheen mosaic virus (DsMV)	Potyvirus dasheenis
Johnsongrass mosaic virus (JGMV)	Potyvirus halapensis
Leek yellow stripe virus (LYSV)	Potyvirus ampeloprasi
Maize dwarf mosaic virus (MDMV)	Potyvirus zeananus
Papaya ringspot virus (PRSV)	Potyvirus papayanuli
Pea seed-borne mosaic virus (PSbMV)	Potyvirus pisumsemenportati
Pepper mottle virus (PepMoV)	Potyvirus capsimaculae
Pepper severe mosaic virus (PepSMV) ¹	Potyvirus capsiseverum
Plum pox virus (PPV)	Potyvirus plumpoxi
Potato aucuba mosaic virus (PAMV)	Potexvirus marmoraucuba
Potato latent virus (PotLV)	Carlavirus latensolani
Potato leafroll virus (PLRV)	Polerovirus PLRV
Potato mop-top virus (PMTV)	Pomovirus solani
Potato virus A (PVA)	Potyvirus atuberosi
Potato virus M (PVM)	Carlavirus misolani
Potato virus S (PVS)	Carlavirus sigmasolani
Potato virus T (PVT)	Tepovirus tafsolani
Potato virus V (PVV)	Potyvirus vetuberosi
Potato virus X (PVX)	Potexvirus ecspotati
Potato yellow dwarf virus (PYDV)	Alphanucleorhabdovirus tuberosum
Soybean mosaic virus (SMV)	Potyvirus glycitessellati
Sugarcane mosaic virus (SCMV)	Potyvirus sacchari
Sunflower ring blotch virus (SuRBV) ¹	Potyvirus heliannulabis
Sweet potato feathery mottle virus (SPFMV)	Potyvirus batataplumei
Sweet potato virus G (SPVG)	Potyvirus gebatatae
Tobacco etch virus (TEV)	Potyvirus nicotianainsculpentis
Tobacco rattle virus (TRV)	Tobravirus tabaci
Tobacco vein mottling virus (TVMV)	Potyvirus nicotianavenamaculae
Tomato spotted wilt virus (TSWV)	Orthotospovirus tomatomaculae
Turnip mosaic virus (TuMV)	Potyvirus rapae
¹ Predicted non-detection by <i>in silico</i> analysis only	

Diagnostic Specificity

True Negatives 38 Correct Diagnoses 38 Percent 100%

Selectivity:

No Matrix Effect Observed With:			
Potato leaves	Potato sprouts	Potato tubers	
expected to be screened for this p with this assay unless otherwise n	bathogen. Not all plant species sus	nich historically cause a range of ma ceptible to this pathogen have bee tools, Agdia recommends confirmin ding plants due to positive test res	n screened, but may still be used g all results with a secondary

Matrix Effect Observed With:		
None Known		

Repeatability		Reproducibility	
Number of Samples	80	Number of Samples	18
Replicates per Sample	2 - 3	Replicates per Sample	2
Total Replicates	165	Number of Operators	3
Replicates in Agreement	163	Total Replicates	108
Percent Agreement	98.8%	Replicates in Agreement	94
		Percent Agreement	87.0%

Robustness

Planned deviation analysis:

No deviations from the user guide protocol were validated.

Stability:

	1-year stability (accelerated)	Real-time Stability Verification
Positive Sample (High)	Pass	Monitoring
Positive Sample (High)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Negative Sample	Pass	Monitoring
Negative Sample	Pass	Monitoring

Glossary

Diagnostic sensitivity ¹ :	The percentage of positive samples correctly identified in an experiment with known positive controls.
Diagnostic specificity ¹ :	The percentage of negative samples correctly identified in an experiment with known negative controls.
Analytical sensitivity ³ :	The smallest amount of target that can be detected reliably (this is sometimes referred to as the 'limit of detection')
Analytical specificity ³ :	(comprises inclusivity and exclusivity)
Inclusivity ³ :	The performance of a test with a range of target isolates covering genetic diversity, different geographical origin and/or hosts associated with the target organism.
Exclusivity ³ :	The performance of a test with a range of non-targets (e.g. cross-reaction with closely related organisms, contaminants)
Selectivity ² :	The level of effect that matrices and relevant plant parts have on the performance of the assay.
Repeatability ² :	The agreement between test replicates of the same sample tested by the same operator.
Reproducibility ³ :	The ability of a test to provide consistent results when applied to aliquots of the same sample tested under different conditions (e.g. time, users, equipment, location)
Robustness ^{1,3} :	The extent to which varying test conditions (e.g. temperature, volume, change of buffers) affect the established test performance values. May also be referred to as planned deviation analysis.
Stability ¹ :	The performance of test reagents or controls over time.

References:

¹Groth-Helms, D., Rivera, Y., Martin, F. N., Arif, M., Sharma, P., Castlebury, L. A. (in press). Terminology and Guidelines for Diagnostic Assay Development and Validation: Best Practices for Molecular Tests. PhytoFrontiers.

²Eads, A., Groth-Helms, D., Davenport, B., Cha, X., Li, R., Walsh, C., Schuetz, K., (in press). The Commercial Validation of Three Tomato Brown Rugose Fruit Virus Assays. PhytoFrontiers.

³EPPO (2018) PM 7/76 (5) Use of EPPO Diagnostic Standards, EPPO Bulletin 48, 373–377.

Questions or Technical Support:

Phone: 800-622-4342 (toll-free) or 574-264-2014 Fax: 574-264-2153

E-mail: <u>info@agdia.com</u> for sales and general product information <u>techsupport@agdia.com</u> for technical information and troubleshooting

Web: www.agdia.com

AmplifyRP Test Kits employ recombinase polymerase amplification (RPA) technology, developed by TwistDx Limited, U.K. Use of the RPA process and probe technologies are protected by US patents 7,270,981 B2, 7,399,590 B2, 7,435,561 B2, 7,485,428 B2 and foreign equivalents in addition to pending patents.

AmplifyRP[®] is a registered trademark of Agdia, Inc.