AmplifyRP® XRT for HSVd Validation Report Hop stunt viroid Product No. XCS 64200

Test Characteristics

Test Name	Hop stunt viroid	Test Label	FAM-labeled target probe
Catalog Number	64200	Internal Control	N/A
Acronym	HSVd	Format	XRT
Genus	Hostuviroid	Diluents	GEB/PD1
Binomial Name	Hostuviroid impedihumuli	Sample Dilution	1:20

Summary

AmplifyRP XRT for HSVd is a rapid RNA amplification and detection platform designed for testing of citrus, hemp, hop, and grape for Hop stunt viroid. This kit includes lyophilized reaction pellets containing the necessary reagents to amplify HSVd RNA at a single operating temperature (42 °C).

Diagnostic Sensit	tivity	Analytical Sensitiv	ity
True Positives	68	Analytical Sensitivity:	The assay is 92.5% sensitive between 1 pg/µL and 100 fg/µL. (n=40)
Correct Diagnoses	68	Limit of Detection:	The assay has a 100% detection rate at 1 pg/µL with RNA transcripts. (n=20)
Percent	100%		The assay has a 85.0% detection rate at 100 fg/ μL with RNA transcripts. (n=20)

Analytical Specificity

Inclusivity:

Isolates and Geographic Regions Detected:

HSVd citrus-type	HSVd hop-type
HSVd plum-type	HSVd-CAZ2 (Mexico)
HSVd-CC-H	HSVd-cl2
HSVd-E77_HSVd (Spain)	HSVd-HSVd.apr20 (Cyprus)
HSVd-HSVd-maz	HSVd-HSVd-Mor-ValL_Big
HSVd-HT2 (Iran)	HSVd-PM-26x
HSVd-SC-18 (China)	HSVd-tk4 (Turkey)

Exclusivity:

Cross-reacts With:

Virus Name	Species Name
None Known	

Does Not Cross-react With:

Virus Name	Species Name
American hop latent virus (AHLV)	Carlavirus americanense
Apple fruit crinkle viroid (AFCVd) ¹	N/A
Apple mosaic virus (ApMV)	llarvirus ApMV

Does Not Cross-react With:

Virus Name	Species Name
Arabis mosaic virus (ArMV)	Nepovirus arabis
Dahlia latent viroid (DLVd)	Hostuviroid latensdahliae
Hop latent viroid (HLVd)	Cocadviroid latenshumuli
Hop latent virus (HpLV)	Carlavirus latenshumuli
Hop mosaic virus (HpMV)	Carlavirus humuli
¹ AFCVd is a tentative member of the genus Apscaviroid	

Diagnostic Specificity

True Negatives60Correct Diagnoses60

Percent 100%

Selectivity:

No Matrix Effect Observed With:			
Citrus leaves	Cucumber leaves	Grape leaves	Hemp leaves
Hemp roots	Hop leaves	Hop roots	
The hosts on the above list have been chosen to represent those which historically cause a range of matrix effects, in addition to those			

The hosts on the above list have been chosen to represent those which historically cause a range of matrix effects, in addition to those expected to be screened for this pathogen. Not all plant species susceptible to this pathogen have been screened, but may still be used with this assay unless otherwise noted below. As with all diagnostic tools, Agdia recommends confirming all results with a secondary detection method before making any economic decisions (ex: discarding plants due to positive test results, etc.).

Matrix Effect Observed With:		
None Known		

Repeatability

Number of Samples	128
Replicates per Sample	2 - 3
Total Replicates	280
Replicates in Agreement	279
Percent Agreement	99.6%

Reproducibility

- Number of Samples 24
- Replicates per Sample 3
- Number of Operators 4
 - Total Replicates 288
- Replicates in Agreement 280
 - Percent Agreement 97.2%

Planned deviation analysis:

No deviations from the user guide protocol were validated.

Stability:

	1-year stability (accelerated)	Real-time Stability Verification
Positive Sample (High)	Pass	Monitoring
Positive Sample (High)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Positive Sample (Low)	Pass	Monitoring
Negative Sample	Pass	Monitoring
Negative Sample	Pass	Monitoring

Glossary

Diagnostic sensitivity ¹ :	The percentage of positive samples correctly identified in an experiment with known positive controls.
Diagnostic specificity ¹ :	The percentage of negative samples correctly identified in an experiment with known negative controls.
Analytical sensitivity ³ :	The smallest amount of target that can be detected reliably (this is sometimes referred to as the 'limit of detection')
Analytical specificity ³ :	(comprises inclusivity and exclusivity)
Inclusivity ³ :	The performance of a test with a range of target isolates covering genetic diversity, different geographical origin and/or hosts associated with the target organism.
Exclusivity ³ :	The performance of a test with a range of non-targets (e.g. cross-reaction with closely related organisms, contaminants)
Selectivity ² :	The level of effect that matrices and relevant plant parts have on the performance of the assay.
Repeatability ² :	The agreement between test replicates of the same sample tested by the same operator.
Reproducibility ³ :	The ability of a test to provide consistent results when applied to aliquots of the same sample tested under different conditions (e.g. time, users, equipment, location)
Robustness ^{1,3} :	The extent to which varying test conditions (e.g. temperature, volume, change of buffers) affect the established test performance values. May also be referred to as planned deviation analysis.
Stability ¹ :	The performance of test reagents or controls over time.

References:

¹Groth-Helms, D., Rivera, Y., Martin, F. N., Arif, M., Sharma, P., Castlebury, L. A. (in press). Terminology and Guidelines for Diagnostic Assay Development and Validation: Best Practices for Molecular Tests. PhytoFrontiers.

²Eads, A., Groth-Helms, D., Davenport, B., Cha, X., Li, R., Walsh, C., Schuetz, K., (in press). The Commercial Validation of Three Tomato Brown Rugose Fruit Virus Assays. PhytoFrontiers.

³EPPO (2018) PM 7/76 (5) Use of EPPO Diagnostic Standards, EPPO Bulletin 48, 373–377.

Questions or Technical Support:

Phone: 800-622-4342 (toll-free) or 574-264-2014 Fax: 574-264-2153

E-mail: <u>info@agdia.com</u> for sales and general product information <u>techsupport@agdia.com</u> for technical information and troubleshooting

Web: <u>www.agdia.com</u>

AmplifyRP Test Kits employ recombinase polymerase amplification (RPA) technology, developed by TwistDx Limited, U.K. Use of the RPA process and probe technologies are protected by US patents 7,270,981 B2, 7,399,590 B2, 7,435,561 B2, 7,485,428 B2 and foreign equivalents in addition to pending patents.

AmplifyRP[®] is a registered trademark of Agdia, Inc.