

Phone: 800-622-4342 Sales Email: info@agdia.com Technical Email: techsupport@agdia.com

Test Characteristics

Test Name Impatiens necrotic spot virus Capture Antibody Monoclonal (Mouse)

Catalog Number 20501 Detection Antibody Monoclonal (Mouse)

Acronym INSV Format Lateral Flow Device

GenusOrthotospovirusDiluentsSEB1Binomial NameOrthotospovirus impatiensnecromaculaeSample Dilution1:20

Summary

The Impatiens necrotic spot virus (INSV) ImmunoStrip is used to detect the presence of INSV in ornamental and vegetable crops. INSV is a member of the Orthotospovirus genus known for their enveloped, spherical-shaped virus particles. ImmunoStrips are the perfect screening tool for use in the field, greenhouse, and the lab.

Diagnostic Sensitivity

Analytical Sensitivity

True Positives 12 Limit of Detection: 1:20,480 dilution of infected tissue (pathogen titer unknown)

Correct Diagnoses 12

Percent 100%

Analytical Specificity

Inclusivity:

Isolates and Geographic Regions Detected:

INSV-1 (NC, USA) ¹	INSV California isolate
INSV Oregon isolate	
¹INSV-1 has been <u>reported</u> to be detected.	

Exclusivity:

Cross-reacts With:

None Known

Does Not Cross-react With:

Virus Name	Species Name			
Capsicum chlorosis virus (CaCV)	Orthotospovirus capsiciflavi			
Chrysanthemum stem necrosis virus (CNSV)	Orthotospovirus chrysanthinecrocaulis			
Groundnut ringspot virus (GRSV)	Orthotospovirus arachianuli			
Iris yellow spot virus (IYSV)	Orthotospovirus iridimaculaflavi			
Melon yellow spot virus (MYSV)	Orthotospovirus meloflavi			
Tomato chlorotic spot virus (TCSV)	Orthotospovirus tomatoflavi			
Tomato spotted wilt virus (TSWV)	Orthotospovirus tomatomaculae			

p318.3 Revised: 12/18/2024 Page 1 of 3

Does Not Cross-react With:

Virus Name	Species Name
Tomato zonate spot virus (TZSV) ¹	Orthotospovirus tomatozonae
Watermelon silver mottle virus (WSMoV)	Orthotospovirus citrullomaculosi
Groundnut bud necrosis virus (GBNV)	Orthotospovirus arachinecrosis
Soybean vein necrosis virus (SVNV)	Orthotospovirus glycininecrovenae
¹ Reported to not cross-react with Tomato zonate spot virus (TZSV)	

Diagnostic Specificity

True Negatives 148
Correct Diagnoses 148
Percent 100%

Selectivity:

No Matrix Effect Observed With:					
No Matrix Effect Observed With:					
Alstroemeria leaves	Alternanthera leaves	Anemone leaves	Angelonia leaves		
Antirhinum Snapdragon leaves	Argyranthemum leaves	Aster leaves	Bacopa leaves		
Bean leaves	Beet roots	Begonia leaves	Blueberry leaves		
Browallia leaves	Buddleia leaves	Calibrachoa leaves	Campanula leaves		
Chrysanthemum leaves	Cleome leaves	Coleus leaves	Coreopsis leaves		
Cucumber leaves	Cyclamen leaves	Cymbidium leaves	Dahlia leaves		
Dianthus leaves	Diascia leaves	Fuchsia leaves	Gaillardia leaves		
Garlic leaves	Gerbera leaves	Helichrysum leaves	Hosta leaves		
Impatiens leaves	Indigo leaves	Ipomoea leaves	Kalanchoe leaves		
Limonium Statice leaves	Lobelia leaves	Mimulus Monkey Flower leaves	Nandina leaves		
Nemesia leaves	Nepeta Catmint leaves	Nepeta Catnip leaves	Osteospermum leaves		
Papaya leaves	Penstemon leaves	Pepper leaves	Perscum leaves		
Petunia leaves	Phlox leaves	Portulaca leaves	Primrose leaves		
Ranunculus leaves	Raspberry leaves	Salvia leaves	Scabiosa leaves		
Scaevola leaves	Soybean leaves	Strawberry leaves	Strawflower leaves		
Sutera leaves	Tobacco leaves	Tomato leaves	Torenia leaves		
Verbascum leaves	Verbena leaves	Veronica leaves	Watermelon leaves		

The hosts on the above list have been chosen to represent those which historically cause a range of matrix effects, in addition to those expected to be screened for this pathogen. Not all plant species susceptible to this pathogen have been screened, but may still be used with this assay unless otherwise noted below. As with all diagnostic tools, Agdia recommends confirming all results with a secondary detection method before making any economic decisions (ex: discarding plants due to positive test results, etc.).

Matrix Effect Observed With:					
None Known					

p318.3 Revised: 12/18/2024 Page 2 of 3

Glossary

Diagnostic sensitivity1: The percentage of positive samples correctly identified in an experiment with known positive controls.

Diagnostic specificity': The percentage of negative samples correctly identified in an experiment with known negative controls.

Analytical sensitivity³: The smallest amount of target that can be detected reliably (this is sometimes referred to as the 'limit of detection')

The agreement between test replicates of the same sample tested by the same operator.

Analytical specificity³: (comprises inclusivity and exclusivity)

Inclusivity3: The performance of a test with a range of target isolates covering genetic diversity, different geographical origin and/or hosts

associated with the target organism.

Exclusivity3: The performance of a test with a range of non-targets (e.g. cross-reaction with closely related organisms, contaminants)

Selectivity²: The level of effect that matrices and relevant plant parts have on the performance of the assay. Repeatability2:

Reproducibility3: The ability of a test to provide consistent results when applied to aliquots of the same sample tested under different conditions

(e.g. time, users, equipment, location)

The extent to which varying test conditions (e.g. temperature, volume, change of buffers) affect the established test performance Robustness^{1,3}:

values. May also be referred to as planned deviation analysis.

Stability1: The performance of test reagents or controls over time.

References:

Groth-Helms, D., Rivera, Y., Martin, F. N., Arif, M., Sharma, P., Castlebury, L. A. (in press). Terminology and Guidelines for Diagnostic Assay Development and Validation: Best Practices for Molecular Tests. PhytoFrontiers.

²Eads, A., Groth-Helms, D., Davenport, B., Cha, X., Li, R., Walsh, C., Schuetz, K., (in press). The Commercial Validation of Three Tomato Brown Rugose Fruit Virus Assays. PhytoFrontiers.

³EPPO (2018) PM 7/76 (5) Use of EPPO Diagnostic Standards, EPPO Bulletin 48, 373–377.

ImmunoStrip® is a registered trademark of Agdia, Inc.

Page 3 of 3 p318.3 Revised: 12/18/2024