




### **Test Characteristics**

Test Name Fusarium oxysporum Test Label FAM-labeled target probe

Catalog Number 70500 Internal Control ROX-labeled control probe (endogenous)

AcronymFoFormatXRTGenusFusariumDiluentsGEB/PD1

Sample Dilution 1:20

### **Summary**

AmplifyRP® XRT for Fo is a rapid DNA amplification and detection platform designed for testing cannabis plants for Fusarium oxysporum. This kit includes lyophilized reaction pellets containing the necessary reagents to amplify Fo DNA and an endogenous DNA control at a single operating temperature (42 °C).

# **Diagnostic Sensitivity**

# **Analytical Sensitivity**

True Positives 84 Limit of Detection: Approximately 32 - 72 copies of DNA fragments

Correct Diagnoses 82
Percent 97.6%

## **Analytical Specificity**

### Inclusivity:

### Formae Speciales Detected:

| Fusarium oxysporum f.sp. albedinis¹                                | Fusarium oxysporum f.sp. asparagi <sup>1</sup>    |
|--------------------------------------------------------------------|---------------------------------------------------|
| Fusarium oxysporum f.sp. batatas                                   | Fusarium oxysporum f.sp. canariensis <sup>1</sup> |
| Fusarium oxysporum f.sp. cannabis                                  | Fusarium oxysporum f.sp. cattleyae <sup>1</sup>   |
| Fusarium oxysporum f.sp. cepae <sup>1</sup>                        | Fusarium oxysporum f.sp. chrysanthemi             |
| Fusarium oxysporum f.sp. ciceris <sup>1</sup>                      | Fusarium oxysporum f.sp. cubense                  |
| Fusarium oxysporum f.sp. cucumerinum <sup>1</sup>                  | Fusarium oxysporum f.sp. cyclaminis               |
| Fusarium oxysporum f.sp. dianthi <sup>1</sup>                      | Fusarium oxysporum f.sp. fragariae                |
| Fusarium oxysporum f.sp. gladioli¹                                 | Fusarium oxysporum f.sp. koae <sup>1</sup>        |
| Fusarium oxysporum f.sp. lactucae <sup>1</sup>                     | Fusarium oxysporum f.sp. lentis <sup>1</sup>      |
| Fusarium oxysporum f.sp. lilli                                     | Fusarium oxysporum f.sp. lini                     |
| Fusarium oxysporum f.sp. lycopersici                               | Fusarium oxysporum f.sp. medicaginis <sup>1</sup> |
| Fusarium oxysporum f.sp. melonis                                   | Fusarium oxysporum f.sp. narcissi <sup>1</sup>    |
| Fusarium oxysporum f.sp. nicotianae <sup>1</sup>                   | Fusarium oxysporum f.sp. niveum <sup>1</sup>      |
| Fusarium oxysporum f.sp. palmarum <sup>1</sup>                     | Fusarium oxysporum f.sp. passiflorae              |
| Fusarium oxysporum f.sp. phaseoli <sup>1</sup>                     | Fusarium oxysporum f.sp. pisi <sup>1</sup>        |
| Fusarium oxysporum f.sp. radicis-lycospersici                      | Fusarium oxysporum f.sp. tuberosi <sup>1</sup>    |
| Fusarium oxysporum f.sp. tuliape <sup>1</sup>                      | Fusarium oxysporum f.sp. vasinfectum              |
| Fusarium oxysporum f.sp. vasinfectum <sup>1</sup>                  | Fusarium oxysporum f.sp. zingiberi <sup>1</sup>   |
| <sup>1</sup> Predicted detection by <i>in silico</i> analysis only |                                                   |

#### Formae Speciales Not Detected:

| Fusarium oxysporum f.sp. betae |  |
|--------------------------------|--|
|--------------------------------|--|

p301.2 Revised:04/19/2023 Page 1 of 4

# **Exclusivity:**

## Cross-reacts With:

| Fusarium sporotrichioides <sup>1</sup>                          |  |
|-----------------------------------------------------------------|--|
| <sup>1</sup> A weak cross reaction was observed inconsistently. |  |

## Does Not Cross-react With:

| Alfalfa mosaic virus (AMV) <sup>1</sup>                    | Alternaria alternata                       |  |
|------------------------------------------------------------|--------------------------------------------|--|
| Anthracnose spp. <sup>1</sup>                              | Armillaria mellea <sup>1</sup>             |  |
| Aspergillus <sup>1</sup>                                   | Beet curly top virus (BCTV)                |  |
| Botryosphaeria dothidea <sup>1</sup>                       | Botryosphaeria stevensii <sup>1</sup>      |  |
| Botrytis cinerea <sup>1</sup>                              | Bremia lactucae <sup>1</sup>               |  |
| Colletotrichum actuatum <sup>1</sup>                       | Colletotrichum gloeosporioides             |  |
| Diplodia seriata <sup>1</sup>                              | Fusarium anthophilum <sup>1</sup>          |  |
| Fusarium avenaceum <sup>1</sup>                            | Fusarium brachygibbosum                    |  |
| Fusarium chlamydosporum <sup>1</sup>                       | Fusarium culmorum <sup>1</sup>             |  |
| Fusarium equiseti <sup>1</sup>                             | Fusarium fujikuroi¹                        |  |
| Fusarium graminearum                                       | Fusarium langsethiae <sup>1</sup>          |  |
| Fusarium maniliforme                                       | Fusarium meridionale <sup>1</sup>          |  |
| Fusarium pallidoroseum                                     | Fusarium poae <sup>1</sup>                 |  |
| Fusarium prolieratum                                       | Fusarium solani                            |  |
| Fusarium subglutinans                                      | Fusarium tricinctum <sup>1</sup>           |  |
| Fusarium venenatum <sup>1</sup>                            | Fusarium verticillioides                   |  |
| Hop latent viroid (HLVd)                                   | Lettuce chlorosis virus (LCV) <sup>1</sup> |  |
| Monilinia fructicola <sup>1</sup>                          | Mycosphaerella <sup>1</sup>                |  |
| Penicillium <sup>1</sup>                                   | Phytophthora cactorum <sup>1</sup>         |  |
| Phytophthora capsici                                       | Phytophthora ramorum                       |  |
| Puccinia striiformis <sup>1</sup>                          | Pythium irregulare                         |  |
| Rhizoctonia solani                                         | Sclerotinia <sup>1</sup>                   |  |
| Septoria <sup>1</sup>                                      | Tobacco mosaic virus (TMV)¹                |  |
| Verticillium dahliae                                       |                                            |  |
| ¹Predicted non-detection by <i>in silico</i> analysis only |                                            |  |

# **Diagnostic Specificity**

True Negatives 77
Correct Diagnoses 77
Percent 100%

# Selectivity:

# No Matrix Effect Observed With:

| Alfalfa crowns       | Alfalfa roots     | Alfalfa seeds     | Almond leaves |
|----------------------|-------------------|-------------------|---------------|
| Apple leaves         | Banana corms      | Banana leaves     | Banana roots  |
| Chrysanthemum leaves | Citrus spp. roots | Citrus spp. stems | Corn leaves   |
| Cotton crown         | Cotton leaves     | Cotton petioles   | Cotton roots  |
| Cotton seeds         | Cotton stems      | Cucumber leaves   | Dahlia leaves |
| Geranium leaves      | Hemp crown        | Hemp leaves       | Hemp petioles |

p301.2 Revised:04/19/2023 Page 2 of 4

## No Matrix Effect Observed With:

| Hemp roots                                                 | Hemp stems       | Hop leaves                 | Lettuce crowns    |
|------------------------------------------------------------|------------------|----------------------------|-------------------|
| Lettuce leaves                                             | Lettuce roots    | Lettuce seeds <sup>1</sup> | Melon leaves      |
| Onion crowns                                               | Onion roots      | Onion tubers               | Pea crowns        |
| Pea roots                                                  | Pea seeds        | Pelargonium leaves         | Pepper crowns     |
| Pepper seeds                                               | Pistachio leaves | Potato crowns              | Potato roots      |
| Potato tubers                                              | Soil             | Soybean crowns             | Soybean roots     |
| Soybean seeds                                              | Squash leaves    | Strawberry crowns          | Strawberry roots  |
| Tobacco crowns                                             | Tobacco roots    | Tobacco seeds              | Tomato crowns     |
| Tomato leaves                                              | Tomato roots     | Tomato seeds               | Watermelon crowns |
| Watermelon roots                                           | Watermelon seeds | Well Water                 | Wheat leaves      |
| <sup>1</sup> False negative observed in 1 out of 2 samples |                  |                            |                   |

### Matrix Effect Observed With:

| Pepper roots |  |  |
|--------------|--|--|
|              |  |  |

# Repeatability

# Reproducibility

Number of Samples230Number of Samples28Replicates per Sample2 - 3Replicates per Sample2 - 3Average Percent Agreement<br/>Between Replicates97.4%Number of Operators2Average Percent Agreement Between<br/>Replicates Between Operators92.4%

## **Robustness**

## Planned deviation analysis:

No deviations from the user guide protocol were validated.

# Stability:

|                        | 1-year stability (accelerated) | Real-time Stability Verification |
|------------------------|--------------------------------|----------------------------------|
| Positive Sample (High) | Pass                           | Monitoring                       |
| Positive Sample (High) | Pass                           | Monitoring                       |
| Positive Sample (Low)  | Pass                           | Monitoring                       |
| Positive Sample (Low)  | Pass                           | Monitoring                       |
| Positive Sample (Low)  | Pass                           | Monitoring                       |
| Positive Sample (Low)  | Pass                           | Monitoring                       |
| Negative Sample        | Pass                           | Monitoring                       |
| Negative Sample        | Pass                           | Monitoring                       |

p301.2 Revised:04/19/2023 Page 3 of 4

## **Glossary**

Diagnostic sensitivity<sup>1</sup>: The percentage of positive samples correctly identified in an experiment with known positive controls.

Diagnostic specificity<sup>1</sup>: The percentage of negative samples correctly identified in an experiment with known negative controls.

Analytical sensitivity3: The smallest amount of target that can be detected reliably (this is sometimes referred to as the 'limit of detection')

Analytical specificity<sup>3</sup>: (comprises inclusivity and exclusivity)

Inclusivity<sup>3</sup>: The performance of a test with a range of target isolates covering genetic diversity, different geographical origin and/or hosts

associated with the target organism.

Exclusivity<sup>3</sup>: The performance of a test with a range of non-targets (e.g. cross-reaction with closely related organisms, contaminants)

Selectivity<sup>2</sup>: The level of effect that matrices and relevant plant parts have on the performance of the assay.

Repeatability<sup>2</sup>: The agreement between test replicates of the same sample tested by the same operator.

Reproducibility<sup>3</sup>: The ability of a test to provide consistent results when applied to aliquots of the same sample tested under different conditions

(e.g. time, users, equipment, location)

Robustness<sup>1,3</sup>: The extent to which varying test conditions (e.g. temperature, volume, change of buffers) affect the established test performance

values. May also be referred to as planned deviation analysis.

Stability<sup>1</sup>: The performance of test reagents or controls over time.

#### References:

Groth-Helms, D., Rivera, Y., Martin, F. N., Arif, M., Sharma, P., Castlebury, L. A. (in press). Terminology and Guidelines for Diagnostic Assay Development and Validation: Best Practices for Molecular Tests. PhytoFrontiers.

<sup>2</sup>Eads, A., Groth-Helms, D., Davenport, B., Cha, X., Li, R., Walsh, C., Schuetz, K., (in press). The Commercial Validation of Three Tomato Brown Rugose Fruit Virus Assays. PhytoFrontiers.

<sup>3</sup>EPPO (2018) PM 7/76 (5) Use of EPPO Diagnostic Standards, EPPO Bulletin 48, 373–377.

### **Questions or Technical Support:**

Phone: 800-622-4342 (toll-free) or 574-264-2014

Fax: 574-264-2153

E-mail: info@agdia.com for sales and general product information

techsupport@agdia.com for technical information and troubleshooting

Web: www.agdia.com

AmplifyRP Test Kits employ recombinase polymerase amplification (RPA) technology, developed by TwistDx Limited, U.K. Use of the RPA process and probe technologies are protected by US patents 7,270,981 B2, 7,399,590 B2, 7,435,561 B2, 7,485,428 B2 and foreign equivalents in addition to pending patents.

Amplify  $\ensuremath{\mathsf{RP}}^{\otimes}$  is a registered trademark of Agdia, Inc.

p301.2 Revised:04/19/2023 Page 4 of 4